
ATCI: Reinforcement Learning
Reinforcement Learning in zero-sum games

Mario Martin

CS-UPC

April 25, 2024

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 / 25



Agents in Zero sum games

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 1 / 25



Agents in Zero sum games

We have seen agents in cooperative scenarios. Can we move to other
kind of problems?

Specific case of MARL competition: zero sum games

Techniques we’ll see:
▶ Self-play
▶ Monte-Carlo Tree Search and AlphaZero family of methods

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 2 / 25



Self-Play

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 3 / 25



Self-Play idea

In competitive zero-sum games for 2 players (like go and chess) we
can apply self-play

Introduced years ago to play Backgamon (Tesauro, 92) and very
appealing

Consists in the agent playing against himself to increasingly learn
good policies

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 4 / 25

https://dl.acm.org/doi/10.1007/BF00992697


Self-Play algorithm

Consists in the following:
1 Start with a random policy agent a
2 Create a′ as a copy of the agent a′

3 Do:

1 Play agent a against a′.
2 Agent a learn from experiences of the game. a′ is frozen

4 Repeat until agent a wins consistently a′

5 Copy a in a′

6 Repeat 3-5 until desired performance

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 5 / 25



Self-Play: some notes

Two copies of the same agent. Goal are not 2 competing agents, but
one that plays well.

Player a′ is frozen to improve stability

To improve stability in learning, play not against only last agent but
collect agents in several iteration and play against them

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 6 / 25



Self-Play: application

No previous knowledge needed (not human games, not even the rules
of the game)

Learning creates some kind of curriculum with increasing abilities

You are always playing (and learning) at a competitive level

Usually surpass Human game level play (no examples of expert
playing)

Can Learn surprising / unexpected (not human) strategies

Applied successfully to Checkers, Backgammon, Chess, Go but also
other games like Hide and Seek and soccer soccer.

It can be applied to any kind of base RL algorithm but it works better
with MCTS-based methods

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 7 / 25

https://openai.com/research/emergent-tool-use
https://huggingface.co/deep-rl-course/unit7/self-play?fw=pt


Monte Carlo tree-search

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 8 / 25



Agents in Zero sum games

Can we apply RL in hard games?

You can imagine than in interesting games the number of possible
states in too big to apply Value based techniques (Go 10170, Chess
1048)

Hard to compute a good value function for each one of them...
moreover you will never visit a lot of them in a game.

We will focus on the sub-MDP that depends on the current state
instead of solving all the game

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 9 / 25



Planning: tree search

Zero-sum games have been addressed from a long time ago:
Checkers, Chess, Go...

Usually there have been solved using planning techniques that
generate search trees

We will combine the learning of the policy with tree-search methods.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 10 / 25



Monte-Carlo tree search

In the case of Zero-sum games, the popular approach is Mini-Max
and α− β algorithms

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 11 / 25



Monte-Carlo tree search

First approach to play Go at a decent level

We cannot generate the whole tree to apply minimax.

Reduction of search of the tree at two levels:
▶ Depth: We will stop growing of the tree at some point. We will use a

criteria to evaluate the value of the leafs of the tree-
▶ Breath: We will not explore all action with same probability. We will

give more chances to promising actions

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 12 / 25



Monte-Carlo tree search

Four steps:

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 13 / 25



Monte-Carlo tree search: Selection

Selection:

Let’s assume that for each state we have a Q-value estimation Q(s, a)
obtained from experiences (it will be built during tree search).

Choose action according to:

aUCB1
t = argmax

a∈A

(
Q(s, a) + C

√
2 log t(s)

Nt(s, a)

)
where Nt is the number of times a has been tested in s, and t(s) is
the number of times state s has been visited. C is a hyper-parameter.

We select action until we arrive to a node without Q-value estimation
for at least one action1. This is the node selected.

1Or a terminal state!
Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 14 / 25



Monte-Carlo tree search: Expansion and Simulation

Expansion:

We expand the node selected in expansion step generating a new
node from one action that has never tried before (without Q-values!)

Simulation:

From the node created (expanded) in the previous step, we simulate
a trajectory following a given policy (Rollout Policy).

In MCTS, usually the uniform random policy is used (cheap, fast, no
a priori knowledge required), that is, choose and apply random valid
actions until we arrive to a terminal state so we have a final
evaluation.

We take note of the reward z in the terminal state.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 15 / 25



Monte-Carlo tree search: Expansion and Simulation

Expansion:

We expand the node selected in expansion step generating a new
node from one action that has never tried before (without Q-values!)

Simulation:

From the node created (expanded) in the previous step, we simulate
a trajectory following a given policy (Rollout Policy).

In MCTS, usually the uniform random policy is used (cheap, fast, no
a priori knowledge required), that is, choose and apply random valid
actions until we arrive to a terminal state so we have a final
evaluation.

We take note of the reward z in the terminal state.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 15 / 25



Monte-Carlo tree search: reward Backpropagation

Backpropagation:

We Backpropagate the reward z obtained in the terminal state

We update the Q-value for all antecessor pairs state-action (from the
expanded state to the root of the tree).

Q-values are updated as follows:

t (st)← t (st) + 1

N (st , at)← N (st , at) + 1

Q (st , at)← Q (st , at) +
z − Q (st , at)

N (st , at)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 16 / 25



Example



Example



Example



Example

0



Example

1



Example

0



Example

0



Example

1



Example

0



Monte-Carlo tree search: Overview

This cycle is repeated a lot of times (as computational resources
allow), so the tree grows with each iteration.

When the limit of iterations allowed is reached, an action is chosen
for the root state according to the greedy criteria or, in some
implementations, the action with more visits).

The resulting state from the action execution becomes the root of the
new tree (may reuse statistics of subtree)

From one game to another, the tree is started from scratch (usually).

See a nice and simple implementation in python to play
TIC-TAC-TOE

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 17 / 25

https://gist.github.com/qpwo/c538c6f73727e254fdc7fab81024f6e1


Conclusion MCTS

It is a planing method based on some techniques of RL (see
exploration slides)

How is this related to Learning in competitive MultiAgent systems?

If we estimate Q-values, we can learn them!

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 18 / 25



Conclusion MCTS

It is a planing method based on some techniques of RL (see
exploration slides)

How is this related to Learning in competitive MultiAgent systems?

If we estimate Q-values, we can learn them!

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 18 / 25



AlphaGo family

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 19 / 25



AlphaGo family

An evolution of methods proposed by DeepMind:

▶ AlphaGo (Silver et al. 16) where the authors describe a MCTS
method with RL and self-play that learns to play Go beating the
Human World Master of the game

▶ AlphaZero (Silver et al. 17), an evolution where agent learns purely
using RL without any previous knowledge of the game

▶ Muzero (Schrittwieser et al. 19) that learns to play without a model
of the game (model-free RL). It can be extended to any kind of
problem in RL (we will see it in Model-based methods)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 20 / 25

https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ
https://arxiv.org/abs/1911.08265v2


AlphaZero

Simpler than AlphaGo and applicable to other games

In AlphaZero there is only a Neural Network fθ that outputs both, the
value of a state vθ(s) and the distribution of probabilities for each
action of a stochastic policy Pθ(a|s)

It applies self-play schema together with a variation of MCTS with
learning of fθ

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 21 / 25



AlphaZero details

It uses MCTS where:
▶ Selection step done according:

aUCB1
t = argmax

ai∈A
Q (st , ai ) + c Pθ (ai |st)

√
t(st)

1 + N (st , ai )

▶ Compared with MCTS there is no simulation! The prediction of the
value of the expanded node is used to backpropagate results

▶ Action executed while self-play is according to sampling distribution:

π(s, a) =
N (st , ai )

t(st)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 22 / 25



AlphaZero details

It uses MCTS where:
▶ Selection step done according:

aUCB1
t = argmax

ai∈A
Q (st , ai ) + c Pθ (ai |st)

√
t(st)

1 + N (st , ai )

▶ Compared with MCTS there is no simulation! The prediction of the
value of the expanded node is used to backpropagate results

▶ Action executed while self-play is according to sampling distribution:

π(s, a) =
N (st , ai )

t(st)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 22 / 25



AlphaZero details

It uses MCTS where:
▶ Selection step done according:

aUCB1
t = argmax

ai∈A
Q (st , ai ) + c Pθ (ai |st)

√
t(st)

1 + N (st , ai )

▶ Compared with MCTS there is no simulation! The prediction of the
value of the expanded node is used to backpropagate results

▶ Action executed while self-play is according to sampling distribution:

π(s, a) =
N (st , ai )

t(st)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 22 / 25



AlphaZero details

Learning of fθ is done with cases collected from the play of the kind

(st , π(st), zt)

where for each state in the trajectory st we store the policy
distribution π(st) and z is the final outcome of the trajectory (win or
lose)

Loss for fθ is simply:

l =
∑
t

(vθ (st)− zt)
2 − π(st) · log

(
P⃗θ (st)

)
Loss minimize at the same time the prediction on final game and
mismatch between policy used and the predicted by the network

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 23 / 25



AlphaZero discussion

Some numbers for Go from a nice cheatsheet (not mine) of the paper:
▶ Self-play of about 4.9 million games
▶ At each iteration of SelfPlay the agent a plays 25.000 games against

itself
▶ We continue untill in the last 400 games agent a wins 55% of games
▶ Number of iterations for growing a MTCS: 1600 simulations
▶ Training of the neural network is done with batchsize 2048 from buffer

containing 500.000 last games
▶ In the case of go, input is 17 boards (19x19) stacked representing

current and the last 7 boards per player (x2) plus a board to represent
the turn

▶ Neural Network if composed of 40 residual convolutional layers

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 24 / 25

https://www.cs.upc.edu/~mmartin/alpha_go_zero_cheat_sheet.jpg


AlphaZero discussion

General algorithm for zero sum games

Very effective and state of the art is most zero-sum games (even in
chess!2).

No examples of playing required. Learns from scratch.

Still needs to know the rules of the game (model of the world).
Muzero solves this problem.

When playing in production still generate a tree

Why? Could not we
use the policy learn? In practice better performance.

On the dark side: Time to learn by self-play is high. Not easy to find
NN architectures for each game. Large amount of resources to play
(still uses MCTS)

2See LeelaZero
Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 25 / 25

https://lczero.org/play/quickstart/


AlphaZero discussion

General algorithm for zero sum games

Very effective and state of the art is most zero-sum games (even in
chess!2).

No examples of playing required. Learns from scratch.

Still needs to know the rules of the game (model of the world).
Muzero solves this problem.

When playing in production still generate a tree Why? Could not we
use the policy learn?

In practice better performance.

On the dark side: Time to learn by self-play is high. Not easy to find
NN architectures for each game. Large amount of resources to play
(still uses MCTS)

2See LeelaZero
Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 25 / 25

https://lczero.org/play/quickstart/


AlphaZero discussion

General algorithm for zero sum games

Very effective and state of the art is most zero-sum games (even in
chess!2).

No examples of playing required. Learns from scratch.

Still needs to know the rules of the game (model of the world).
Muzero solves this problem.

When playing in production still generate a tree Why? Could not we
use the policy learn? In practice better performance.

On the dark side: Time to learn by self-play is high. Not easy to find
NN architectures for each game. Large amount of resources to play
(still uses MCTS)

2See LeelaZero
Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 25 / 25

https://lczero.org/play/quickstart/


AlphaZero discussion

General algorithm for zero sum games

Very effective and state of the art is most zero-sum games (even in
chess!2).

No examples of playing required. Learns from scratch.

Still needs to know the rules of the game (model of the world).
Muzero solves this problem.

When playing in production still generate a tree Why? Could not we
use the policy learn? In practice better performance.

On the dark side: Time to learn by self-play is high. Not easy to find
NN architectures for each game. Large amount of resources to play
(still uses MCTS)

2See LeelaZero
Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 25 / 25

https://lczero.org/play/quickstart/

	Agents in Zero sum games
	Self-Play
	Monte Carlo tree-search
	AlphaGo family

