Mario Martin

CS-UPC

April 25, 2024

Agents in Zero sum games

@ We have seen agents in cooperative scenarios. Can we move to other
kind of problems?

@ Specific case of MARL competition: zero sum games

@ Techniques we'll see:
» Self-play
» Monte-Carlo Tree Search and AlphaZero family of methods

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 2/25

Self-Play idea

@ In competitive zero-sum games for 2 players (like go and chess) we
can apply self-play

@ Introduced years ago to play Backgamon (Tesauro, 92) and very
appealing

o Consists in the agent playing against himself to increasingly learn
good policies

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 4/25

https://dl.acm.org/doi/10.1007/BF00992697

Self-Play algorithm

o Consists in the following:

© Start with a random policy agent a
@ Create 2’ as a copy of the agent &’
© Do:
© Play agent a against a’.
@ Agent a learn from experiences of the game. a’ is frozen
© Repeat until agent a wins consistently a’
@ Copy ain a
@ Repeat 3-5 until desired performance

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024

5/25

Self-Play: some notes

@ Two copies of the same agent. Goal are not 2 competing agents, but
one that plays well.

@ Player &’ is frozen to improve stability

@ To improve stability in learning, play not against only last agent but
collect agents in several iteration and play against them

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 6/25

Self-Play: application

@ No previous knowledge needed (not human games, not even the rules
of the game)

@ Learning creates some kind of curriculum with increasing abilities

@ You are always playing (and learning) at a competitive level

@ Usually surpass Human game level play (no examples of expert
playing)

@ Can Learn surprising / unexpected (not human) strategies

@ Applied successfully to Checkers, Backgammon, Chess, Go but also
other games like Hide and Seek and soccer soccer.

@ It can be applied to any kind of base RL algorithm but it works better
with MCTS-based methods

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 7/25

https://openai.com/research/emergent-tool-use
https://huggingface.co/deep-rl-course/unit7/self-play?fw=pt

Agents in Zero sum games

@ Can we apply RL in hard games?

@ You can imagine than in interesting games the number of possible
states in too big to apply Value based techniques (Go 1079, Chess
1048)

@ Hard to compute a good value function for each one of them...
moreover you will never visit a lot of them in a game.

@ We will focus on the sub-MDP that depends on the current state
instead of solving all the game

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 9/25

Planning: tree search

@ Zero-sum games have been addressed from a long time ago:
Checkers, Chess, Go...

@ Usually there have been solved using planning techniques that
generate search trees

@ We will combine the learning of the policy with tree-search methods.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 10/25

@ In the case of Zero-sum games, the popular approach is Mini-Max

and a — 3 algorithms

x| o x|o
o[X[X X[
- \oxo x[o
¢
< X[X
= xo/xo o| x
c O[X[X X[X
3 oo[x|o X|o
w
b o x|o|X o| X
o[X[X XX
X x\o o x|o
[EIES X[%
o o/x X
o o[xX|X
—olo|o
7 X|x|o %x|lo
O[X|X X[
X \0 o X|0
X[X
o/xx
O[X[X
— ol|o|o

Monte-Carlo tree search

@ First approach to play Go at a decent level
@ We cannot generate the whole tree to apply minimax.

@ Reduction of search of the tree at two levels:

» Depth: We will stop growing of the tree at some point. We will use a
criteria to evaluate the value of the leafs of the tree-

» Breath: We will not explore all action with same probability. We will
give more chances to promising actions

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 12/25

@ Four steps:

d n times:

Selectlon Expansion Simulation Backpropagatlon

X

Monte-Carlo tree search: Selection

SELECTION:
@ Let's assume that for each state we have a Q-value estimation Q(s, a)
obtained from experiences (it will be built during tree search).

@ Choose action according to:

2log t(s)>

UCB1 _ iRl
a; " = argmax (Q(s, a)+ C Ne(s.2)

where N; is the number of times a has been tested in s, and t(s) is
the number of times state s has been visited. C is a hyper-parameter.

@ We select action until we arrive to a node without Q-value estimation
for at least one action!. This is the node selected.

'Or a terminal state!
Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 14 /25

Monte-Carlo tree search: Expansion and Simulation

EXPANSION:

@ We expand the node selected in expansion step generating a new
node from one action that has never tried before (without Q-values!)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 15/25

Monte-Carlo tree search: Expansion and Simulation

EXPANSION:

@ We expand the node selected in expansion step generating a new
node from one action that has never tried before (without Q-values!)

SIMULATION:
@ From the node created (expanded) in the previous step, we simulate
a trajectory following a given policy (Rollout Policy).
@ In MCTS, usually the uniform random policy is used (cheap, fast, no
a priori knowledge required), that is, choose and apply random valid
actions until we arrive to a terminal state so we have a final

evaluation.
@ We take note of the reward z in the terminal state.

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 15/25

Monte-Carlo tree search: reward Backpropagation

BACKPROPAGATION:
@ We Backpropagate the reward z obtained in the terminal state
@ We update the Q-value for all antecessor pairs state-action (from the
expanded state to the root of the tree).

@ Q-values are updated as follows:
t(St) <— t(St) + 1
,\/(5157 at) — N(St, at) +1

Q (st,at) < Q(st,a¢) + lezti)af)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 16 /25

- 1 iteration

Example

Example

- 2 iterations @
(@)

Example

- 3iterations @

Example

« 4 jterations @
s Vi @
]

Example

- 5iterations
() @)

Example

- 6 iterations @

@ @@ @
@)

Example

- 7 iterations @

Example

- 8 iterations @

@ (@B @ @
@) @) @)

Example

- 9iterations @

Monte-Carlo tree search: Overview

@ This cycle is repeated a lot of times (as computational resources
allow), so the tree grows with each iteration.

@ When the limit of iterations allowed is reached, an action is chosen
for the root state according to the greedy criteria or, in some
implementations, the action with more visits).

@ The resulting state from the action execution becomes the root of the
new tree (may reuse statistics of subtree)

@ From one game to another, the tree is started from scratch (usually).

@ See a nice and simple implementation in python to play
TIC-TAC-TOE

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 17/25

https://gist.github.com/qpwo/c538c6f73727e254fdc7fab81024f6e1

@ It is a planing method based on some techniques of RL (see
exploration slides)

@ How is this related to Learning in competitive MultiAgent systems?

Conclusion MCTS

@ It is a planing method based on some techniques of RL (see
exploration slides)

@ How is this related to Learning in competitive MultiAgent systems?

o If we estimate Q-values, we can learn them!

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 18/25

AlphaGo family

@ An evolution of methods proposed by DeepMind:

» AlphaGo (Silver et al. 16) where the authors describe a MCTS
method with RL and self-play that learns to play Go beating the
Human World Master of the game

» AlphaZero (Silver et al. 17), an evolution where agent learns purely
using RL without any previous knowledge of the game

» Muzero (Schrittwieser et al. 19) that learns to play without a model
of the game (model-free RL). It can be extended to any kind of
problem in RL (we will see it in Model-based methods)

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 20/25

https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf
https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
https://www.nature.com/articles/nature24270.epdf?author_access_token=VJXbVjaSHxFoctQQ4p2k4tRgN0jAjWel9jnR3ZoTv0PVW4gB86EEpGqTRDtpIz-2rmo8-KG06gqVobU5NSCFeHILHcVFUeMsbvwS-lxjqQGg98faovwjxeTUgZAUMnRQ
https://arxiv.org/abs/1911.08265v2

AlphaZero

@ Simpler than AlphaGo and applicable to other games

@ In AlphaZero there is only a Neural Network fy that outputs both, the
value of a state vyp(s) and the distribution of probabilities for each
action of a stochastic policy Py(als)

o It applies self-play schema together with a variation of MCTS with
learning of fy

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 21/25

@ It uses MCTS where:

» Selection step done according:

— argmax Q (e, 1) + ¢ Py (ar]s) L)

aUCBl v
¢ a€A 1+N (st’ ai)

AlphaZero details

@ It uses MCTS where:
» Selection step done according:

=argmax Q (st,a;) + ¢ Py (ailst) Vt(st)

JucBt
‘ aicA 1+ N(sta;)

» Compared with MCTS there is no simulation! The prediction of the
value of the expanded node is used to backpropagate results

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 22/25

AlphaZero details

@ It uses MCTS where:
» Selection step done according:

al(’JCBl

V t(st)
=argm » di Py (ailst) —F7——
aragie ax Q(st,a;) + cPy(a \st)l N (s, 2)

» Compared with MCTS there is no simulation! The prediction of the
value of the expanded node is used to backpropagate results
» Action executed while self-play is according to sampling distribution:

N (s¢, a;)
t(st)

7(s,a) =

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 22/25

AlphaZero details

@ Learning of fy is done with cases collected from the play of the kind

(st m(st), z¢)

where for each state in the trajectory s; we store the policy
distribution 7(s;) and z is the final outcome of the trajectory (win or
lose)

@ Loss for fy is simply:

| = Z (vo (st) — Zt)2 —7(st) - log (IS@ (st))

@ Loss minimize at the same time the prediction on final game and
mismatch between policy used and the predicted by the network

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 23/25

AlphaZero discussion

@ Some numbers for Go from a nice cheatsheet (not mine) of the paper:

» Self-play of about 4.9 million games

» At each iteration of SelfPlay the agent a plays 25.000 games against
itself

» We continue untill in the last 400 games agent a wins 55% of games

» Number of iterations for growing a MTCS: 1600 simulations

» Training of the neural network is done with batchsize 2048 from buffer
containing 500.000 last games

» In the case of go, input is 17 boards (19x19) stacked representing
current and the last 7 boards per player (x2) plus a board to represent
the turn

» Neural Network if composed of 40 residual convolutional layers

Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 24 /25

https://www.cs.upc.edu/~mmartin/alpha_go_zero_cheat_sheet.jpg

AlphaZero discussion

@ General algorithm for zero sum games

@ Very effective and state of the art is most zero-sum games (even in
chess!?).

@ No examples of playing required. Learns from scratch.

@ Still needs to know the rules of the game (model of the world).
Muzero solves this problem.

@ When playing in production still generate a tree

?See LeelaZero
Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 25/25

https://lczero.org/play/quickstart/

AlphaZero discussion

@ General algorithm for zero sum games

@ Very effective and state of the art is most zero-sum games (even in
chess!?).

@ No examples of playing required. Learns from scratch.

@ Still needs to know the rules of the game (model of the world).
Muzero solves this problem.

@ When playing in production still generate a tree Why? Could not we

use the policy learn?

?See LeelaZero
Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 25/25

https://lczero.org/play/quickstart/

AlphaZero discussion

@ General algorithm for zero sum games

@ Very effective and state of the art is most zero-sum games (even in
chess!?).

@ No examples of playing required. Learns from scratch.

@ Still needs to know the rules of the game (model of the world).
Muzero solves this problem.

@ When playing in production still generate a tree Why? Could not we

use the policy learn? In practice better performance.

?See LeelaZero
Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 25/25

https://lczero.org/play/quickstart/

AlphaZero discussion

@ General algorithm for zero sum games

@ Very effective and state of the art is most zero-sum games (even in
chess!?).

@ No examples of playing required. Learns from scratch.

@ Still needs to know the rules of the game (model of the world).
Muzero solves this problem.

@ When playing in production still generate a tree Why? Could not we
use the policy learn? In practice better performance.

@ On the dark side: Time to learn by self-play is high. Not easy to find
NN architectures for each game. Large amount of resources to play
(still uses MCTYS)

?See LeelaZero
Mario Martin (CS-UPC) ATCI: Reinforcement Learning @MIA-UPC April 25, 2024 25/25

https://lczero.org/play/quickstart/

	Agents in Zero sum games
	Self-Play
	Monte Carlo tree-search
	AlphaGo family

